Dubbo采用微内核+插件体系,使得设计优雅,扩展性强。那所谓的微内核+插件体系是如何实现的呢!大家是否熟悉spi(service providerinterface)机制,即我们定义了服务接口标准,让厂商去实现(如果不了解spi的请谷歌百度下), jdk通过ServiceLoader类实现spi机制的服务查找功能 -- Java 规范 SPI。 1、为什么不使用JDK SPI在dubbo中它实现了一套自己的SPI机制。JDK标准的SPI会一次性实例化扩展点所有实现,如果有扩展实现初始化很耗时,但如果没用上也加载,会很浪费资源. 增加了对扩展点IoC和AOP的支持,一个扩展点可以直接setter注入其它扩展点。 2、Dubbo SPI 约定SPI文件的存储路径在以下三个文件路径: - META-INF/dubbo/internal/ dubbo内部实现的各种扩展都放在了这个目录了
- META-INF/dubbo/
- META-INF/services/
spi 文件 存储路径在以上三个SPI目录下,并且文件名为接口的全路径名 就是=接口的包名+接口名也就是SPI接口的全路径类名:例如 E:\Project\github\dubbo\dubbo-rpc\dubbo-rpc-default\src\main\resources\META-INF\dubbo\internal\com.alibaba.dubbo.rpc.Protocol每个spi 文件里面的格式定义为: 扩展名=具体的类名,例如 dubbo=com.alibaba.dubbo.rpc.protocol.dubbo.DubboProtoco3、涉及到类与注解简单说明在dubbo SPI中最关键的类是ExtensionLoader。每个定义的spi的接口都会构建一个ExtensionLoader实例,存储在ExtensionLoader对象的ConcurrentMap<Class<?>,ExtensionLoader<?>> EXTENSION_LOADERS这个map对象中。 获取SPI对象的典型方式为: Protocol protocol = ExtensionLoader.getExtensionLoader(Protocol.class).getAdaptiveExtension();对于获取SPI对象的过程会在后面详细说明。 涉及到几个注解。下面我们就来简单的分析一下这些注解。 @SPI:标识在dubbo中需要使用SPI的接口上,指定的SPI里面指定的值为默认值。 @Adaptive:这个注解和@SPI注解配置使用,用于它可以标注在SPI接口扩展类上,也可以标注在SPI接口的方法上。如果这个注解标注在SPI接口实现的扩展类上时,获取的SPI实例对象就是标注了@Adaptive注册的类。例如:ExtensionFactory的SPI扩展对象为AdaptiveExtensionFactory。如果注解在标注在SPI接口的方法上说明就是一个动态代理类,它会通过dubbo里面的com.alibaba.dubbo.common.compiler.CompilerSPI接口通过字节码技术来创建对象。创建出来的对象名格式为SPI接口$Adaptive,例如Protocol接口创建的SPI对象为Protocol$Adaptive。 @Activate: 是一个 Duboo 框架提供的注解。在 Dubbo 官方文档上有记载: 对于集合类扩展点,比如:Filter, InvokerListener, ExportListener, TelnetHandler, StatusChecker等, 可以同时加载多个实现,此时,可以用自动激活来简化配置。
4、ExtensionLoader在上一个章节我们就说过对于每个定义的spi的接口都会构建一个ExtensionLoader实例,然后通过这个实例的getAdaptiveExtension就可以获取一个扩展。下面我们就来详细的解剖一下ExtensionLoader这个对象。 在这个对象里面有几个重要的方法: - getExtensionLoader(Class<T> type) 就是为该接口new 一个-ExtensionLoader,然后缓存起来。
- getAdaptiveExtension() 获取一个扩展类,如果@Adaptive注解在类上就是一个装饰类;如果注解在方法上就是一个动态代理类,例如Protocol$Adaptive对象。
- getExtension(String name) 获取一个指定对象。
- getActivateExtension(URL url, String[] values, String group):方法主要获取当前扩展的所有可自动激活的实现标注了@Activate注解
Protocol protocol = ExtensionLoader.getExtensionLoader(Protocol.class).getAdaptiveExtension();基于以上的dubbo SPI典型使用我们来分析一下这些方法。 4.1 getExtensionLoader就是为该接口new 一个ExtensionLoader,然后缓存起来。并为非ExtensionFactory的对象创建一个objectFactory用来依赖注入。 >com.alibaba.dubbo.common.extension.ExtensionLoader#getExtensionLoader public static <T> ExtensionLoader<T> getExtensionLoader(Class<T> type) { ExtensionLoader<T> loader = (ExtensionLoader<T>) EXTENSION_LOADERS.get(type); if (loader == null) { // 创建一个ExtensionLoader EXTENSION_LOADERS.putIfAbsent(type, new ExtensionLoader<T>(type)); loader = (ExtensionLoader<T>) EXTENSION_LOADERS.get(type); } return loader; }为SPI接口创建一个ExtensionLoader对象,用于获取扩展对象。 >com.alibaba.dubbo.common.extension.ExtensionLoader#ExtensionLoader private ExtensionLoader(Class<?> type) { this.type = type; objectFactory = (type == ExtensionFactory.class ? null : ExtensionLoader.getExtensionLoader(ExtensionFactory.class).getAdaptiveExtension()); }在创建ExtensionLoader对象的时候,如果当前对象不是ExtensionFactory为当前SPI接口创建一个ExtensionFactory对象。当调用ExtensionLoader#injectExtension方法的时候进行依赖注入。 4.2 getAdaptiveExtension这个方法是dubbo SPI里最核心的方法。dubbo通过这个方法来获取到SPI接口的对应扩展类。 >com.alibaba.dubbo.common.extension.ExtensionLoader#getAdaptiveExtension public T getAdaptiveExtension() { Object instance = cachedAdaptiveInstance.get(); if (instance == null) { if(createAdaptiveInstanceError == null) { synchronized (cachedAdaptiveInstance) { instance = cachedAdaptiveInstance.get(); if (instance == null) { try { // 创建对应的扩展类 instance = createAdaptiveExtension(); cachedAdaptiveInstance.set(instance); } } } } } return (T) instance; }当SPI接口首次调用这个方法的时候,扩展类还没有创建好,所以它就会直接访问createAdaptiveExtension方法。 >com.alibaba.dubbo.common.extension.ExtensionLoader#createAdaptiveExtension private T createAdaptiveExtension() { try { return injectExtension((T) getAdaptiveExtensionClass().newInstance()); } catch (Exception e) { throw new IllegalStateException("Can not create adaptive extenstion " + type + ", cause: " + e.getMessage(), e); } }通过getAdaptiveExtensionClass获取到SPI扩展对象Class的实例,然后通过反射方法newInstance()创建这个对象。最后通过最开始介绍的ExtensionLoader#getExtensionLoader创建的objectFactory进行依赖注入。 >com.alibaba.dubbo.common.extension.ExtensionLoader#getAdaptiveExtensionClass private Class<?> getAdaptiveExtensionClass() { // @Adaptive 注解在类上 getExtensionClasses(); if (cachedAdaptiveClass != null) { return cachedAdaptiveClass; } // @Adaptive注解在SPI接口方法上 return cachedAdaptiveClass = createAdaptiveExtensionClass(); }这里就是上面说的,如果@Adaptive接口标注在@SPI接口的实现类上面就会直接返回这个对象的Class实例。如果标注在@SPI接口的方法上,就会通过dubbo中的字节码Compiler接口通过动态代理来创建SPI接口的实例。 4.2.1 @Adaptive在类上下面我们就来分析一下@Adaptive标注在SPI接口的实现类上。SPI扩展的创建过程。 >com.alibaba.dubbo.common.extension.ExtensionLoader#getExtensionClasses private Map<String, Class<?>> getExtensionClasses() { Map<String, Class<?>> classes = cachedClasses.get(); if (classes == null) { synchronized (cachedClasses) { classes = cachedClasses.get(); if (classes == null) { // 加载扩展类 classes = loadExtensionClasses(); cachedClasses.set(classes); } } } return classes; }加载扩展类,并把扩展类Class实例设置到cachedClasses中。 >com.alibaba.dubbo.common.extension.ExtensionLoader#loadExtensionClasses private Map<String, Class<?>> loadExtensionClasses() { final SPI defaultAnnotation = type.getAnnotation(SPI.class); if(defaultAnnotation != null) { String value = defaultAnnotation.value(); if(value != null && (value = value.trim()).length() > 0) { String[] names = NAME_SEPARATOR.split(value); if(names.length > 1) { throw new IllegalStateException("more than 1 default extension name on extension " + type.getName() + ": " + Arrays.toString(names)); } // 设置扩展类的默认名称 if(names.length == 1) cachedDefaultName = names[0]; } } Map<String, Class<?>> extensionClasses = new HashMap<String, Class<?>>(); // 加载上面所说的三个配置文件中的dubbo SPI文件 loadFile(extensionClasses, DUBBO_INTERNAL_DIRECTORY); loadFile(extensionClasses, DUBBO_DIRECTORY); loadFile(extensionClasses, SERVICES_DIRECTORY); return extensionClasses; }从代码里面可以看到,在loadExtensionClasses中首先会检测扩展点在@SPI注解中配置的默认扩展实现的名称,并将其赋值给cachedDefaultName属性进行缓存,后面想要获取该扩展点的默认实现名称就可以直接通过访问cachedDefaultName字段来完成,比如getDefaultExtensionName方法就是这么实现的。从这里的代码中又可以看到,具体的扩展实现类型,是通过调用loadFile方法来加载,分别从一下三个地方加载: - META-INF/dubbo/internal/
- META-INF/dubbo/
- META-INF/services/
那么这个loadFile方法则至关重要了,看看其源代码: private void loadFile(Map<String, Class<?>> extensionClasses, String dir) { // SPI目录与SPI接口 String fileName = dir + type.getName(); try { Enumeration<java.net.URL> urls; ClassLoader classLoader = findClassLoader(); // 扫描classpath下面的当前SPI接口的扩展 if (classLoader != null) { urls = classLoader.getResources(fileName); } else { urls = ClassLoader.getSystemResources(fileName); } if (urls != null) { while (urls.hasMoreElements()) { java.net.URL url = urls.nextElement(); try { BufferedReader reader = new BufferedReader(new InputStreamReader(url.openStream(), "utf-8")); try { String line = null; while ((line = reader.readLine()) != null) { final int ci = line.indexOf('#'); // 读取SPI文件中的SPI扩展 if (ci >= 0) line = line.substring(0, ci); line = line.trim(); if (line.length() > 0) { try { String name = null; int i = line.indexOf('='); if (i > 0) { name = line.substring(0, i).trim(); line = line.substring(i + 1).trim(); } if (line.length() > 0) { Class<?> clazz = Class.forName(line, true, classLoader); if (! type.isAssignableFrom(clazz)) { throw new IllegalStateException("Error when load extension class(interface: " + type + ", class line: " + clazz.getName() + "), class " + clazz.getName() + "is not subtype of interface."); } // 如果Adaptive注解标注在这个对象上,设置cachedAdaptiveClass值为当前对象 if (clazz.isAnnotationPresent(Adaptive.class)) { if(cachedAdaptiveClass == null) { cachedAdaptiveClass = clazz; } else if (! cachedAdaptiveClass.equals(clazz)) { throw new IllegalStateException("More than 1 adaptive class found: " + cachedAdaptiveClass.getClass().getName() + ", " + clazz.getClass().getName()); } } else { try { // 判断这个SPI扩展是否以当前SPI接口为构造器,使用装饰器模式增强这个类 clazz.getConstructor(type); Set<Class<?>> wrappers = cachedWrapperClasses; if (wrappers == null) { cachedWrapperClasses = new ConcurrentHashSet<Class<?>>(); wrappers = cachedWrapperClasses; } wrappers.add(clazz); } catch (NoSuchMethodException e) { // 没有以当前SPI接口为构造器 clazz.getConstructor(); if (name == null || name.length() == 0) { name = findAnnotationName(clazz); if (name == null || name.length() == 0) { if (clazz.getSimpleName().length() > type.getSimpleName().length() && clazz.getSimpleName().endsWith(type.getSimpleName())) { name = clazz.getSimpleName().substring(0, clazz.getSimpleName().length() - type.getSimpleName().length()).toLowerCase(); } else { throw new IllegalStateException("No such extension name for the class " + clazz.getName() + " in the config " + url); } } } String[] names = NAME_SEPARATOR.split(name); if (names != null && names.length > 0) { // 标注了Activate注解,保存在cachedActivates属性中 Activate activate = clazz.getAnnotation(Activate.class); if (activate != null) { cachedActivates.put(names[0], activate); } for (String n : names) { // 把扩展名称与扩展类的映射关系保存在cachedNames中 if (! cachedNames.containsKey(clazz)) { cachedNames.put(clazz, n); } Class<?> c = extensionClasses.get(n); if (c == null) { // 把扩展名称与扩展类的映射关系保存在extensionClasses中,用于返回 extensionClasses.put(n, clazz); } else if (c != clazz) { throw new IllegalStateException("Duplicate extension " + type.getName() + " name " + n + " on " + c.getName() + " and " + clazz.getName()); } } } } } } } catch (Throwable t) { IllegalStateException e = new IllegalStateException("Failed to load extension class(interface: " + type + ", class line: " + line + ") in " + url + ", cause: " + t.getMessage(), t); exceptions.put(line, e); } } } // end of while read lines } finally { reader.close(); } } catch (Throwable t) { logger.error("Exception when load extension class(interface: " + type + ", class file: " + url + ") in " + url, t); } } // end of while urls } } catch (Throwable t) { logger.error("Exception when load extension class(interface: " + type + ", description file: " + fileName + ").", t); }}这里就把@Adaptive的对象放置到cachedAdaptiveClass属性中,把有SPI接口为构造的包装对象放置在cachedWrapperClasses属性中,把没有SPI接口为构造的对象放置在cachedNames属性中。 4.2.2 @Adaptive在方法上如果@Adaptive标注在SPI接口的方法上,那么dubbo就会通过SPI接口Compiler进行字节码操作生成代理对象。默认使用Javassist字节码框架生成代理对象。 >com.alibaba.dubbo.common.extension.ExtensionLoader#createAdaptiveExtensionClass private Class<?> createAdaptiveExtensionClass() { String code = createAdaptiveExtensionClassCode(); ClassLoader classLoader = findClassLoader(); com.alibaba.dubbo.common.compiler.Compiler compiler = ExtensionLoader.getExtensionLoader(com.alibaba.dubbo.common.compiler.Compiler.class).getAdaptiveExtension(); return compiler.compile(code, classLoader); }生成的代码对象的模板如下: package <扩展点接口所在包>;public class <扩展点接口名>$Adpative implements <扩展点接口> { public <有@Adaptive注解的接口方法>(<方法参数>) { if(是否有URL类型方法参数?) 使用该URL参数 else if(是否有方法类型上有URL属性) 使用该URL属性 # <else 在加载扩展点生成自适应扩展点类时抛异常,即加载扩展点失败!> if(获取的URL == null) { throw new IllegalArgumentException("url == null"); } 根据@Adaptive注解上声明的Key的顺序,从URL获致Value,作为实际扩展点名。 如URL没有Value,则使用缺省扩展点实现。如没有扩展点, throw new IllegalStateException("Fail to get extension"); 在扩展点实现调用该方法,并返回结果。 } public <有@Adaptive注解的接口方法>(<方法参数>) { throw new UnsupportedOperationException("is not adaptive method!"); }}例如Protocol生成的代理对象Protocol$Adpative如下: package com.alibaba.dubbo.rpc;import com.alibaba.dubbo.common.extension.ExtensionLoader;public class Protocol$Adpative implements com.alibaba.dubbo.rpc.Protocol { public void destroy() { throw new UnsupportedOperationException("method public abstract void com.alibaba.dubbo.rpc.Protocol.destroy() of interface com.alibaba.dubbo.rpc.Protocol is not adaptive method!"); } public int getDefaultPort() { throw new UnsupportedOperationException("method public abstract int com.alibaba.dubbo.rpc.Protocol.getDefaultPort() of interface com.alibaba.dubbo.rpc.Protocol is not adaptive method!"); } public com.alibaba.dubbo.rpc.Exporter export(com.alibaba.dubbo.rpc.Invoker arg0) throws com.alibaba.dubbo.rpc.RpcException { if (arg0 == null) throw new IllegalArgumentException("com.alibaba.dubbo.rpc.Invoker argument == null"); if (arg0.getUrl() == null) throw new IllegalArgumentException("com.alibaba.dubbo.rpc.Invoker argument getUrl() == null"); com.alibaba.dubbo.common.URL url = arg0.getUrl(); String extName = (url.getProtocol() == null ? "dubbo" : url.getProtocol()); if (extName == null) throw new IllegalStateException("Fail to get extension(com.alibaba.dubbo.rpc.Protocol) name from url(" + url.toString() + ") use keys([protocol])"); com.alibaba.dubbo.rpc.Protocol extension = (com.alibaba.dubbo.rpc.Protocol) ExtensionLoader.getExtensionLoader(com.alibaba.dubbo.rpc.Protocol.class).getExtension(extName); return extension.export(arg0); } public com.alibaba.dubbo.rpc.Invoker refer(java.lang.Class arg0, com.alibaba.dubbo.common.URL arg1) throws com.alibaba.dubbo.rpc.RpcException { if (arg1 == null) throw new IllegalArgumentException("url == null"); com.alibaba.dubbo.common.URL url = arg1; String extName = (url.getProtocol() == null ? "dubbo" : url.getProtocol()); if (extName == null) throw new IllegalStateException("Fail to get extension(com.alibaba.dubbo.rpc.Protocol) name from url(" + url.toString() + ") use keys([protocol])"); com.alibaba.dubbo.rpc.Protocol extension = (com.alibaba.dubbo.rpc.Protocol) ExtensionLoader.getExtensionLoader(com.alibaba.dubbo.rpc.Protocol.class).getExtension(extName); return extension.refer(arg0, arg1); }}创建自适应扩展点实现类型和实例化就已经完成了,下面就来看下扩展点自动注入的实现injectExtension: >com.alibaba.dubbo.common.extension.ExtensionLoader#injectExtension private T injectExtension(T instance) { try { if (objectFactory != null) { for (Method method : instance.getClass().getMethods()) { // 处理所有set方法 if (method.getName().startsWith("set") && method.getParameterTypes().length == 1 && Modifier.isPublic(method.getModifiers())) { // 获取set方法参数类型 Class<?> pt = method.getParameterTypes()[0]; try { // 获取setter对应的property名称 String property = method.getName().length() > 3 ? method.getName().substring(3, 4).toLowerCase() + method.getName().substring(4) : ""; // 根据类型,名称信息从ExtensionFactory获取 Object object = objectFactory.getExtension(pt, property); if (object != null) { // 如果不为空,说set方法的参数是扩展点类型,那么进行注入 method.invoke(instance, object); } } catch (Exception e) { logger.error("fail to inject via method " + method.getName() + " of interface " + type.getName() + ": " + e.getMessage(), e); } } } } } catch (Exception e) { logger.error(e.getMessage(), e); } return instance;}这里可以看到,扩展点自动注入的一句就是根据setter方法对应的参数类型和property名称从ExtensionFactory中查询,如果有返回扩展点实例,那么就进行注入操作。到这里getAdaptiveExtension方法就分析完毕了。 4.3 getExtension这个方法的主要作用是用来获取ExtensionLoader实例代表的扩展的指定实现。已扩展实现的名字作为参数,结合前面学习getAdaptiveExtension的代码,我们可以推测,这方法中也使用了在调用getExtensionClasses方法的时候收集并缓存的数据,其中涉及到名字和具体实现类型对应关系的缓存属性是cachedClasses。具体是是否如我们猜想的那样呢,学习一下相关代码就知道了: public T getExtension(String name) { if (name == null || name.length() == 0) throw new IllegalArgumentException("Extension name == null"); // 判断是否是获取默认实现 if ("true".equals(name)) { return getDefaultExtension(); } Holder<Object> holder = cachedInstances.get(name);// 缓存 if (holder == null) { cachedInstances.putIfAbsent(name, new Holder<Object>()); holder = cachedInstances.get(name); } Object instance = holder.get(); if (instance == null) { synchronized (holder) { instance = holder.get(); if (instance == null) { // 没有缓存实例则创建 instance = createExtension(name); holder.set(instance);// 缓存起来 } } } return (T) instance; } 判断是使用默认的扩展 还是根据名称来创建相应的SPI扩展。 >com.alibaba.dubbo.common.extension.ExtensionLoader#createExtension private T createExtension(String name) { // 获取解析Adaptive标注了@Adaptive的对象缓存在属性cachedNames Class<?> clazz = getExtensionClasses().get(name); if (clazz == null) { throw findException(name); } try { // 从已创建Extension实例缓存中获取 T instance = (T) EXTENSION_INSTANCES.get(clazz); if (instance == null) { EXTENSION_INSTANCES.putIfAbsent(clazz, (T) clazz.newInstance()); instance = (T) EXTENSION_INSTANCES.get(clazz); } // 注入AdaptiveExtension injectExtension(instance); Set<Class<?>> wrapperClasses = cachedWrapperClasses; // Wrapper类型进行包装,层层包裹 if (wrapperClasses != null && wrapperClasses.size() > 0) { for (Class<?> wrapperClass : wrapperClasses) { instance = injectExtension((T) wrapperClass.getConstructor(type).newInstance(instance)); } } return instance; } catch (Throwable t) { throw new IllegalStateException("Extension instance(name: " + name + ", class: " + type + ") could not be instantiated: " + t.getMessage(), t); }}这里或许有一个疑问: 从代码中看,不论instance是否存在于EXTENSION_INSTANCE,都会进行扩展点注入和Wrap操作。那么如果对于同一个扩展点,调用了两次createExtension方法的话,那不就进行了两次Wrap操作么? 如果外部能够直接调用createExtension方法,那么确实可能出现这个问题。但是由于createExtension方法是private的,因此外部无法直接调用。而在ExtensionLoader类中调用它的getExtension方法(只有它这一处调用),内部自己做了缓存(cachedInstances),因此当getExtension方法内部调用了一次createExtension方法之后,后面对getExtension方法执行同样的调用时,会直接使用cachedInstances缓存而不会再去调用createExtension方法了。 4.4 getActivateExtensiongetActivateExtension方法主要获取当前扩展的所有可自动激活的实现。可根据入参(values)调整指定实现的顺序,在这个方法里面也使用到getExtensionClasses方法中收集的缓存数据。 >com.alibaba.dubbo.common.extension.ExtensionLoader#getActivateExtension(com.alibaba.dubbo.common.URL, java.lang.String[], java.lang.String) public List<T> getActivateExtension(URL url, String[] values, String group) { List<T> exts = new ArrayList<T>(); List<String> names = values == null ? new ArrayList<String>(0) : Arrays.asList(values); // 如果未配置"-default",则加载所有Activates扩展(names指定的扩展) if (! names.contains(Constants.REMOVE_VALUE_PREFIX + Constants.DEFAULT_KEY)) { // 加载当前Extension所有实现,会获取到当前Extension中所有@Active实现,赋值给cachedActivates变量 getExtensionClasses(); // 遍历当前扩展所有的@Activate扩展 for (Map.Entry<String, Activate> entry : cachedActivates.entrySet()) { String name = entry.getKey(); Activate activate = entry.getValue(); // 判断group是否满足,group为null则直接返回true if (isMatchGroup(group, activate.group())) { // 获取扩展示例 T ext = getExtension(name); // 排除names指定的扩展;并且如果names中没有指定移除该扩展(-name),且当前url匹配结果显示可激活才进行使用 if (! names.contains(name) && ! names.contains(Constants.REMOVE_VALUE_PREFIX + name) && isActive(activate, url)) { exts.add(ext); } } } Collections.sort(exts, ActivateComparator.COMPARATOR); // 默认排序 } // 对names指定的扩展进行专门的处理 List<T> usrs = new ArrayList<T>(); // 遍历names指定的扩展名 for (int i = 0; i < names.size(); i ++) { String name = names.get(i); if (! name.startsWith(Constants.REMOVE_VALUE_PREFIX) // 未设置移除该扩展 && ! names.contains(Constants.REMOVE_VALUE_PREFIX + name)) { if (Constants.DEFAULT_KEY.equals(name)) { // default表示上面已经加载并且排序的exts,将排在default之前的Activate扩展放置到default组之前,例如:ext1,default,ext2 if (usrs.size() > 0) { // 如果此时user不为空,则user中存放的是配置在default之前的Activate扩展 exts.addAll(0, usrs); // 注意index是0,放在default前面 usrs.clear(); // 放到default之前,然后清空 } } else { T ext = getExtension(name); usrs.add(ext); } } } if (usrs.size() > 0) { // 这里留下的都是配置在default之后的 exts.addAll(usrs); // 添加到default排序之后 } return exts; } 5、总结上面把SPI的思路以及源代码分析了一遍,有几点可能需要注意的地方: - 每个ExtensionLoader实例只负责加载一个特定扩展点实现
- 每个扩展点对应最多只有一个ExtensionLoader实例
- 对于每个扩展点实现,最多只会有一个实例
- 一个扩展点实现可以对应多个名称(逗号分隔)
- 对于需要等到运行时才能决定使用哪一个具体实现的扩展点,应获取其自使用扩展点实现(AdaptiveExtension)
- @Adaptive注解要么注释在扩展点@SPI的方法上,要么注释在其实现类的类定义上
- 如果@Adaptive注解注释在@SPI接口的方法上,那么原则上该接口所- - 有方法都应该加@Adaptive注解(自动生成的实现中默认为注解的方法抛异常)
- 每个扩展点最多只能有一个被AdaptiveExtension
- 每个扩展点可以有多个可自动激活的扩展点实现(使用@Activate注解)
- 由于每个扩展点实现最多只有一个实例,因此扩展点实现应保证线程安全
- 如果扩展点有多个Wrapper,那么最终其执行的顺序不确定(内部使用ConcurrentHashSet存储)
参考文章:
|